式①の答えは2桁なので、式①は足し算,かけ算のいずれかです。 また式③が成り立つことから、エは8以下、アは7以下です。 式①の答えの十の位をオとして考えます。

式①が足し算の場合。

オ=1。アは 7 以下なので (P,A)=(6,4), (7,3) のいずれかです。(P,A)=(7,3) のとき ウ=1 ですが、オ=1 であるため不適。よって (P,A)=(6,4), ウ=2, x=8 に決まります。このとき式③は y=8=1 となりますが、オ=1 より不適。よって式①はかけ算です。

式①がかけ算の場合。

アは 7 以下なので、式①は $5 \times 2 = 10$, $5 \times 4 = 20$, $6 \times 5 = 30$ のいずれかです。 $(\mathcal{P}, \mathcal{I}) = (5,2)$ のとき オ = 1 より ウ= 3, $\mathcal{I} = 8$ 。このとき式③は 9 - 8 = 1 となりますが、 $\mathcal{I} = 1$ より不適。 $(\mathcal{P}, \mathcal{I}) = (6,5)$ のとき、図 1,2 の場合が考えられますが、いずれも式②が成立しません。

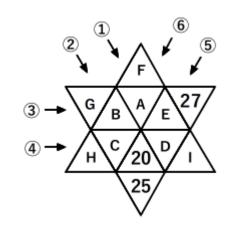
よって $(\mathcal{P},\mathcal{A})=(5,4)$ 。 このとき式① \sim ③は図3の場合に成立します。

答 ア 5, イ 4, ウ 1, エ 6

 $18\sim29$ の合計は $(18+29)\times12\div2=282$ 。 図のように 1 列に並ぶ数を① \sim ⑥とします。

(1)

③+④=118×2=236 より F+25=282-236=46。 よって **F=46-25=21**。



(2)

①+②= $118 \times 2 = 236$ より H+27=282 - 236 = 46。よって **H=46-27=19**。 残りの数で和が 46 になる組み合わせは 18 + 28, 22 + 24 なので **G=18**, **22**, **24**, **28** のいずれかです。

②から G+B+C=118-(20+25)=73。⑥から A+B+C=118-(21+19)=78。 よって $\mathbf{A}-\mathbf{G}=(A+B+C)-(G+B+C)=78-73=\mathbf{5}$ 。

G=18 のとき A=23。このとき B=26, C=29, D=22, E=24, I=28 で条件を満たします。

G=22 のとき A=27 より不適。

G=24 のとき A=29。ただし B+E=118-(24+29+27)=38 となり、これを満たす B,E の組み合わせはないので不適。

G=28 のとき A=33 より不適。

以上より A=23。

答(1)21 (2)23

図のように、長方形 EFGH と各辺が平行な正方形 IJKL で正方形 ABCD を囲み、直線 EF, HG と IL との交点を P, Q とします。また直線 EH, FG と LK の交点を R, S とします。

三角形 AEF+三角形 CGH

 $= EF \times PI \div 2 + GH \times QL \div 2$

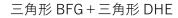
 $= 1 \times PI \div 2 + 1 \times QL \div 2$

 $= PI \div 2 + QL \div 2$

 $= (PI + QL) \div 2$

 $(PI + QL) \div 2 = 5cm^2 \ \ \ \ \ \ PI + QL = 10cm_{\circ}$

正方形 IJKL の1辺の長さ=PQ+PI+QL=3+10=13cm。



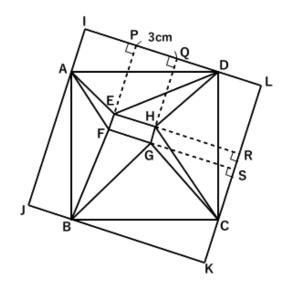
 $= FG \times SK \div 2 + HE \times RL \div 2$

 $= 3 \times SK \div 2 + 3 \times RL \div 2$

 $= 3 \times (SK + RL) \div 2$

 $= 3 \times (LK - RS) \div 2$

 $= 3 \times (13 - 1) \div 2 = 3 \times 12 \div 2 = 18 \text{cm}^2$



D は A の倍数であり、D-1 は B の倍数であり、D+1 は C の倍数です。 言い換えれば、**D は A の倍数かつ、B の倍数+1 かつ、C の倍数-1**です。

A の倍数かつ、B の倍数 +1 かつ、C の倍数 -1 を満たす整数は 1 から 999 で D だけなので、D + (A,B,C の最小公倍数)は 999 より大きい、すなわち 1000 以上であり、D - (A,B,C の最小公倍数)は 1 より小さい、すなわち 0 以下です。

D+(A,B,C の最小公倍数)と D-(A,B,C の最小公倍数)の差は $2\times(A,B,C$ の最小公倍数)。 1000 以上と 0 以下の差は 1000 以上。

よって 2×(A,B,C の最小公倍数) は 1000 以上なので A,B,C の最小公倍数は 500 以上です。

1 桁の整数 A,B,C の最小公倍数の最大は $7 \times 8 \times 9 = 504$ で、500 以上はこれだけです。よって、A,B,C は 7,8,9 のいずれかであることがわかります。

504 をもとに、7,8,9 の倍数が連続して並ぶ場合について調べると次のようになります。

	495	496	497	498	499	500	501	502	503	504
7の倍数	×	×	0	×	×	×	×	×	×	0
8の倍数	×	0	×	×	×	×	×	×	×	0
9の倍数	0	×	×	×	×	×	×	×	×	0

496+504 は 999 より大きく、496-504 は 1 より小さいため、D は 496 です。 また A=8, B=9, C=7 となります。

答 A8, B9, C7, D496

(1)

- **イ.** $8=2\times2\times2$ より、8[10]は「2 を 3 回かけ合わせた数」を 10 回かけ合わせた数です。 よって $8[10]=2[3\times10]=2[30]$
- **ウ.** $16=2\times2\times2\times2$ より、16[8]は「2 を 4 回かけ合わせた数」を 8 回かけ合わせた数です。 よって $16[8]=2[4\times8]=2[32]$

2[30] < 2[31] < 2[32] なので小さい順に並べるとイ,ア,ウとなります。

答 イ,ア,ウ

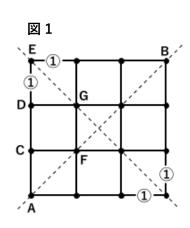
(2)

- ア. $9=3\times3$ より、9[22]は「3 を 2 回かけ合わせた数」を 22 回かけ合わせた数です。 よって $9[22]=3[2\times22]=3[44]$
- **イ.** 3 をかけ合わせてできる数で 28 に最も近い数は 27 なので、27[15]について考えます。 27=3×3×3 より、27[15]は「3 を 3 回かけ合わせた数」を 15 回かけ合わせた数です。 27[15]=3[3×15]=3[45] なので **28[15]は 3[45]より大きい数**です。
- **ウ.** 3 をかけ合わせてできる数で 79 に最も近い数は 81 なので、81[11]について考えます。 $81=3\times3\times3\times3\times3$ より、81[11]は「3 を 4 回かけ合わせた数」を 11 回かけ合わせた数です。 $81[11]=3[4\times11]=3[44]$ なので **79[11]は 3[44]より小さい数**です。
- **エ.** $243=3\times3\times3\times3\times3\times3$ より、243[9]は「3 を 5 回かけ合わせた数」を 9 回かけ合わせた数です。 よって $243[9]=3[5\times9]=3[45]$

79[11] < 9[22] < 243[9] < 28[15] なので小さい順に並べるとウ,ア,エ,イとなります。

答 ウ,ア,エ,イ

まず道 DE を通って、A から B まで最短距離で行く進み方が何通りあるかを考えます。 $A \rightarrow D$ は 1 通り, $E \rightarrow B$ も 1 通りなので、**道 DE を通る進み方は 1×1=1 通り** です。このとき図 1 のように対称性から、他の 3 本の道を通る進み方もすべて 1 通りであることがわかります。同様に他の道を通る進み方について考えます。



道 AC を通る進み方。

A から B までの進み方は全部で 20 通りです。A をスタートして上に行くか、右に行くか、進み方はちょうど半分ずつなので、道 AC を通る進み方は $20 \div 2 = 10$ 通り。

道CD を通る進み方。

 $A \rightarrow C$ は1通り。 $D \rightarrow B$ は調べると4通り。よって道 CD を通る進み方は $1 \times 4 = 4 通り$ 。

道 CF を通る進み方。

道 AC を通る進み方は 10 通り、道 CD を通る進み方は 4 通りなので、道 CF を通る進み方は 10-4=6 通り。

道 DG を通る進み方。

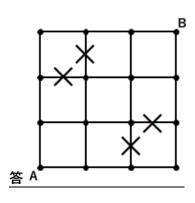
道 CD を通る進み方が 4 通り、道 DE を通る進み方が 1 通りなので、 道 DG を通る進み方は 4-1=3 通り。

道FG を通る進み方。

 $A \rightarrow F$ は 2 通り。 $G \rightarrow B$ は調べると 3 通り。 よって道 FG を通る進み方は $2 \times 3 = 6$ 通り。

対称性から、それぞれの道を通る進み方は図2のようになります。

20-17=3 より「3通り」の道が通れなくなればいいので、答えは次のようになります。



以下では、例えば A が 1 回目の宣言する数を A①、B が 5 回目の宣言する数を B⑤のように表すことに します。

(1)

A① = 3 のとき、A② = 7 で A が勝ちます。そこで B は A を勝たせないために B①で 7 を宣言します。次に A は B を勝たせないために A②で 3 を宣言します。同様に相手の合計の一の位を D にさせないように D ないにゲームを進めて行くと表 D のようになります。

B®で B を勝たせないために、A は A®で 1 を宣言する必要がありますが、B7=1 なので、1 を宣言することはできません。よって B8=1 で B が勝ちます。

表 1	1	2	3	4	⑤	6	7	8
Α	3	3	9	4	3	5	2	×
合計の一の位	3	6	5	9	2	7	9	
В	7	4	5	1	8	3	1	1
合計の一の位	7	1	6	7	5	8	9	0

(2)

A が先手の場合。

表 2 の状態から考えます。A®で A を勝たせないために、B⑦で 3 を宣言する必要がありますが、3 を宣言できなかったのは A⑦=3 だったからです。A⑦=3 で合計の一の位が 7 になっているので、A⑥で合計の一の位は 7-3=4 だったことがわかります。このとき次に B は A を勝たせないために B⑥で 4 を宣言します。同様にさかのぼって考えると表 3 のようになります。ただしこのとき A①=1 より、B①=9 のはずですが、B①=8 となっているため矛盾します。よって A は先手ではありません。

表 2	1	2	3	4	(5)	6	7	8
Α								3
合計の一の位							7	0
В							×	
合計の一の位								

表 3	1	2	3	4	(5)	6	7	8
Α	1	2	5	3	4	9	3	3
合計の一の位	1	3	8	1	5	4	7	0
В	8	7	2	9	5	6	×	
合計の一の位	8	5	7	6	1	7		

B が先手の場合。

A®で A を勝たせないために、B®で 3 を宣言する必要がありますが、3 を宣言できなかったのは A⑦=3 だったからです。同様にさかのぼって考えると表 4 のようになります。

表 4	1	2	3	4	5	6	7	8
Α	1	2	5	3	4	9	3	3
合計の一の位	1	3	8	1	5	4	7	0
В	9	9	7	2	9	5	6	×
合計の一の位	9	8	5	7	6	1	7	

よって B が先手で、最初に宣言した数は 9 です。

答(1)B,1(2)B,9

角 $ACB = 180 - (27 + 9 + 42 + 30) = 72^{\circ}$, 角 ABC = 角 $ACB = 72^{\circ}$ より三角形 ABC は二等辺 三角形です。

次に図のように BD を延長して、 二等辺三角形 ABE を作ります。

角 $CAE = 180 - 42 \times 2 - 27 - 9 = 60$ ° より **三角形 ACE は正三角形**です。

角ア=180-(42+69)=69°より **三角形 EAD は二等辺三角形**なので AE=DE。

このとき DE=CE より**三角形 EDC も二等辺三角形**です。

角 $I = 60 - 42 = 18^{\circ}$ より 角 $D = (180 - 18) \div 2 = 81^{\circ}$ 。 D = 30 + ? より $P = 81 - 30 = 51^{\circ}$ であることがわかります。

